

LKS32MC07X with built-in 3P3N driver Datasheet

© 2023, all rights reserved by Linko Semiconductor Confidential. Unauthorized dissemination is prohibited.

 ${\small @ 2023 All rights reserved by Linko Semiconductor. Confidential. Unauthorized dissemination is prohibited. }$

1 Overview

1.1 Functions

LKS32MC074F/076F is a 32-bit MCU targeting motor control applications. With all modules required for common motor control systems and three-phase P/N MOS gate driver, it can directly drive three-channel P/N MOS power device.

• Features

- > 96MHz 32-bit Cortex-M0 core
- > Customized instruction set DSP for motor control
- Ultra low power sleep mode
- > Three-phase full-bridge bootstrap gate driver
- Industrial temperature range
- ▶ High ESD and group pulse reliability

• Memory

- ▶ Built-in flash including 64kB/128kB main area and 1.5kB NVR
- Endurance: 100,000 Cycles(min)
- > Data retention: more than 100 years under room temperature 25 °C
- Single byte program: 7.5us(max), Sector erase: 5ms(max)
- Sector size 512bytes, supporting Sector erase/program
- Flash data anti-theft by programming the last word of flash to any words other than 0xFFFFFFFF

• Operating Conditions

- 7.5~32V (Maximum: 40V), single power supply, with an integrated internal 5V LDO for partial power supply for internal MCU of chip
- ➢ Operating Conditions: -40∼105°C
- Clock
 - ▶ 8MHz built-in high-precision RC oscillator, with an accuracy of ± 1% at -40 ~ 105 °C
 - > 32KHz built-in low-speed clock for low-power mode
 - > Operating on an external 8MHz crystal is available
 - ▶ Internal PLL up to 96 MHz
- Peripheral module
 - Two UARTs
 - > Two 16-bit standard timers (TIM), support capture and edge-aligned PWM function
 - Two 32-bit standard timers (TIM), support capture and edge-aligned PWM function; support orthogonal code input, CW/CCW input, and pulse&symbol input
 - Motor control PWM module, supports 12 channels/6 pairs of PWM waveform output, inde-

pendent dead-band control

- > Hall signal interface with speed measurement and debouncing function
- Hardware watchdog
- 4 Groups of 16bit GPIO at the most. 8 GPIOs could be used as wake-up source,15 GPIOs could be used as external IRQ source

• Simulation module

- Two 12bit SAR ADC, simultaneous double sampling, 3Msps sampling and conversion rate, and each sampling circuit supports up to 16 channels, including 4 OPA outputs and 10 ex-ternal ADC channels for a total of 14 optional ADC channel signals
- > Four operational amplifiers. Differential PGA mode is available.
- > Three comparators. Hysteresis mode is available.
- > Two 12bit digital-to-analog converter (DAC)
- ➤ ± 2 °C built-in temperature sensor
- > 1.2V 0.8% built-in linear regulator
- Low-power LDO and power monitoring circuit
- > RC oscillator with high precision and low temperature drift
- Crystal oscillator circuits
- ➢ Integrated 32kHz+4MHz RC
- ➢ Integrated 96MHz PLL

1.2 Performance advantages

- > High reliability, high integration level, small package size, saving BOM cost;
- Integrated 4 channels high-speed OPAs and 3 channels comparators, meeting the needs of different system topology like single resistance/double resistance/three resistance current sampling;
- High-speed OPA is integrated with over-voltage protection circuit, which allows high-voltage common-mode signals to be input, which could support direct current sampling of MOSFET resistance with the simplest circuit topology.
- Via a proprietary technique, ADC and high-speed OPA could cooperate well, making them able to handle a wider current dynamic range, while ensuring the sampling precision of high-speed small current and low-speed high current;
- The control circuit is simple and efficient, with strong anti-interference ability, stable and reliable;
- Single power 7.5~32V supply, integrated 5V LDO internally;
- > Three-phase full-bridge bootstrap gate driver is integrated
- Supports IEC/UL60730 functional safety certification

Applicable to control systems such as inductive BLDC/non-inductive BLDC/inductive FOC/non-inductive FOC and stepper motors, permanent magnet synchronous and asynchronous motors.

4

1.3 Naming Conventions

	$\underline{LKS32} \underline{MC} \underline{070} \underline{R} \underline{8} \underline{T} \underline{8} \underline{XX}$
Device ser	ies
LKS32	= 32bit MCU
Product ty	
MC	= Motor Control Applications
AT	= Automobile Applications
Device sub	family
070/071	= 2.5~5.5V,2 ADC,4 PGA,DSP
070FL/071	DO/074D/DO = 2.5~5.5V,2 ADC,4 PGA,DSP,6N Driver
074F/076F	= 2.5~5.5V,2 ADC,4 PGA,DSP,6N Driver
072	= 2.5~5.5V,2 ADC,3 PGA
073	= 2.5~5.5V,2 ADC,1 PGA
077	= 2.5~5.5V,2 ADC,2 PGA
077E	= 7.5~28V, 2 ADC, 2 PGA, 3P3N Driver
Pin count	
L	= 16 pins
Н	= 20 pins
М	= 24 pins
К	= 32 pins
F	= 40 pins
C	= 48 pins
N	= 52 pins
R	= 64 pins
V	=100 pins
v Z	=144 pins
Code size	
4	= 16Kbyte Flash Memory
6	= 32Kbyte Flash Memory
8	= 64Kbyte Flash Memory
В	=128Kbyte Flash Memory
С	=256Kbyte Flash Memory
D	=384Kbyte Flash Memory
Е	=512Kbyte Flash Memory
Package	
Р	= TSSOP
Т	= TQFP/LQFP
Q	= QFN
Š	= SSOP
Н	= BGA
Temperati	
6	$= -40 \sim 85^{\circ}$
8	$= -40 \sim 105^{\circ}$
9	$= -40 \sim 105$ = $-40 \sim 125^{\circ}$
-	
Options	
TR	= Tape and reel packing
Р	= Engineering Samples

Fig.1-1 Naming Conventions of Linko Components

1.4 Resource Diagram

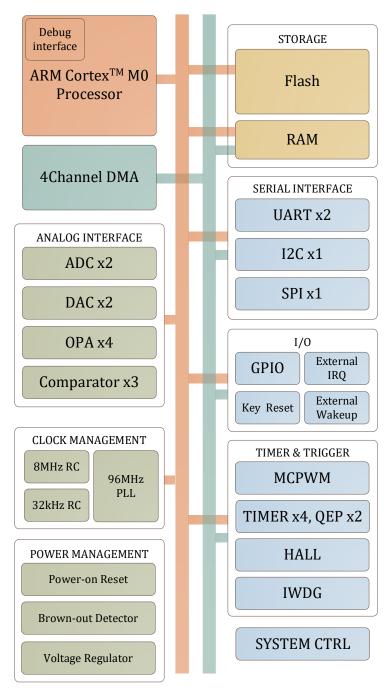
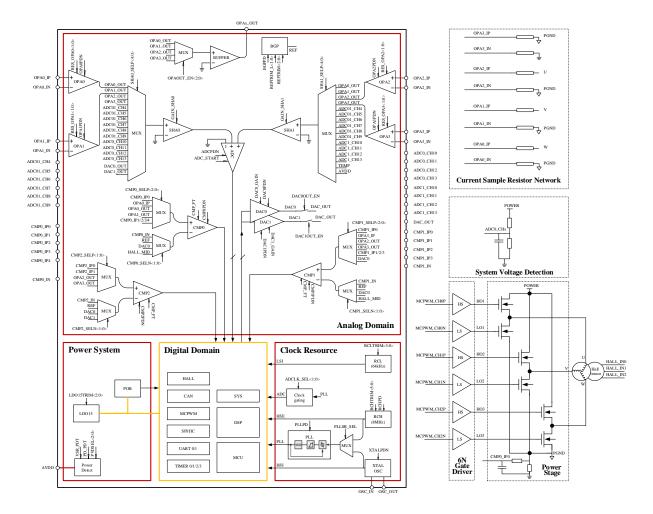



Fig. 1-2 LKS32MC07x Resource Diagram

1.5 FOC System Example

* ADC 01 _ CH4 \sim ADC 01 _ CH9 are common channels for ADC0 and ADC 1

Fig.1-3 LKS32MC077EM6S8 Simplified Schematic of FOC System

Device selection table

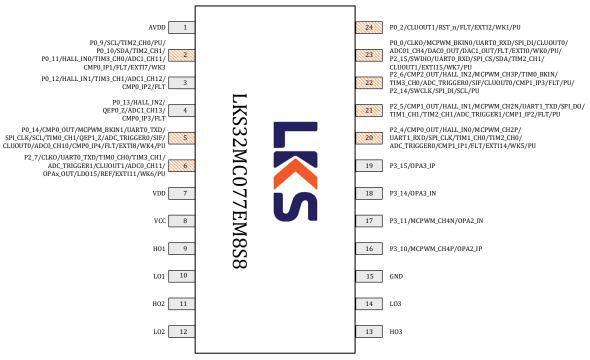
2 Device selection table

	Frequency (MHz)	Flash (kB)	RAM (kB)	ADC ch.	DAC	Comparator	Comparator ch.	OPA	HALL	IdS	IIC	UART	CAN	Temp. Sensor	PLL	QEP	Gate driver	Gate Driver current (A)	Pre-drive supply (V)	Gate floating voltage (V)	Others	Package
LKS32MC070FLRBT8	96	128	12	14	12BITx2	3	10	4	3	1	1	2	Yes	Yes	Yes	Yes	6N	+1/-1	4.5~20	250	5V LDO	LQFP64
LKS32MC070RBT8	96	128	12	14	12BITx2	3	11	4	3	1	1	2	Yes	Yes	Yes	Yes						LQFP64
LKS32MC071CBT8	96	128	12	13	12BITx2	3	11	4	3	1	1	2	Yes	Yes	Yes	Yes						TQFP48
LKS32MC071C8T8	96	64	12	13	12BITx2	3	11	4	3	1	1	2		Yes	Yes	Yes						TQFP48
LKS32MC071D0C8T8	96	64	12	13	12BITx2	3	10	3	3	1	1	2	Yes	Yes	Yes	Yes	6N	+1/-1	4.5~20	250	5V LDO	TQFP48
LKS32MC072KBQ8	96	128	12	8	12BITx2	3	7	3	3	1	1	2		Yes	Yes	Yes						QFN5*5 32L-0.75
LKS32MC072KBT8	96	128	12	9	12BITx2	2	5	0	3	1	1	2	Yes	Yes	Yes	Yes						LQFP32
LKS32MC073HBQ8	96	128	12	4	12BITx2	2	4	1	3	0	1	2		Yes	Yes	Yes						QFN3*3 20L-0.75
LKS32MC074DF8Q8	96	64	12	13	12BITx2	3	9	3	3	1	1	2		Yes	Yes	Yes	6N	+1.2/-1.5	7~20	200		QFN5*5 40L-0.75
LKS32MC074D0F8Q8	96	64	12	12	12BITx2	3	9	3	3	1	1	2		Yes	Yes	Yes	6N	+1/-1	4.5~20	250	5V LDO	QFN5*5 40L-0.75
LKS32MC076FNBQ8	96	128	12	12	12BITx2	3	11	4	3	1	1	2	Yes	Yes	Yes	Yes	6N	+1.2/-1.5	7~20	200		QFN52
LKS32MC077MBS8	96	64	12	6	12BITx2	3	6	2	3	1	1	2		Yes	Yes	Yes						SSOP24L
LKS32MC077EM8S8	96	64	12	6	12BITx2	3	7	2	3	1	1	2		Yes	Yes	Yes	3P3N	+0.05/-0.3	7~32		5V LDO	SSOP24L

Table 2-1 LKS07x Series Device Selection Table

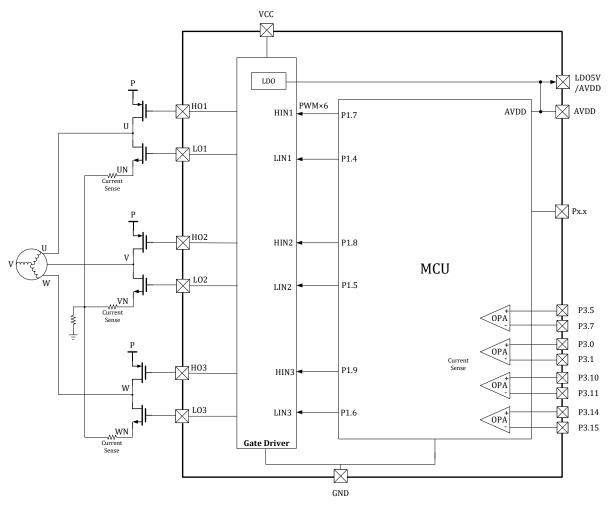
3 Pin Assignment

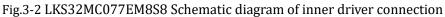
3.1 Pin Assignment and Pin Function Description


3.1.1 Special instructions

The red pin in the pin assignment figures below has built-in pull-up resistors: RSTN has a 100k Ω built-in pull-up resistor, which is enabled automatically after power-up. SWDIO/SWCLK has a 10k Ω built-in pull-up resistor, which is enabled automatically after power-up. The remaining red pins have 10k Ω built-in pull-up resistors, which could be software-enabled.

UARTx_TX(RX): UART TX and RX support interchange. When the second function of GPIO is selected as UART, and GPIO_PIE is input enabled, it can be used as UART_RX; when GPIO_POE is enabled, it can be used as UART_TX. Generally, the same GPIO does not enable input and output at the same time, otherwise the input PDI will receive the data sent by the PDO.


SPI_DI(DO): The DI and DO of SPI can also be interchanged. When the second function of GPIO is SPI, and GPIO_PIE is input enable, it can be used as SPI_DI; when GPIO_POE is output enable, it can be used as SPI_DO. Generally, the same GPIO does not enable input and output at the same time, otherwise the input PDI will receive the data sent by the PDO.


3.1.2 LKS32MC077EM8S8

Notice: Do not pull up the LDO before the VCC is powered on. Otherwise, the LDO may fail to start after the VCC is powered on.

		1
1	AVDD	Chip power supply, power supply range $2.5 \sim 5.5 V$
	P0_9	P0.9
	SCL	I2C clock
	TIM2_CH0	Timer2 channel 0
	PU	Built-in $10k\Omega$ pull-up resistor, software can be turned off
	P0_10	P0.10
	SDA	I2C data
2	TIM2_CH1	Timer2 channel 1
2	P0_11	P0.11
	HALL_IN0	HALL interface input 0
	TIM3_CH0	Timer3 channel 0
	ADC1_CH11	ADC1 Channel 11
	CMP0_IP1	Comparator 0 positive input 1
	FLT	IO filtering
	EXTI7	External GPIO Interrupt Signal 7

Table 3-1	LKS32MC07	7EM8S8 Pin	Function	Description

Number of program P0.12 P0.12 RALLINI HALL interface input 1 TM3_CH1 Timer3 channel 1 ADC1_CH122 ADC1 Channel 12 CMP0_IP2 Comparator 0 positive input 2 PUT 10 filtering P0.13 P0.13 HALLIN2 HALL interface input 2 QPP0_7 QPD Rooder Phase 7 ADC1_CH13 ADC1 Channel 13 CMP0_IP3 Comparator 0 positive input 3 FUT 10 filtering FUT Serial port 0 send (receive) SPLCLK SPL dock SPL SPL GPT Phace Z of GPL 1 encoder SPL Singe line communication CLUOUT0 CLUO output ADOC CH10 ADOC Channel 10 CMP0_JPL<		WK3	External wake-up signal 3
Hull INI HALL INI Hull INI HALL INI Hull INI Hull Initerface input 1 TIM3_CIII Timer3 channel 12 ACIC_H12 ADCI Channel 12 CMP0_JP2 Comparator 0 positive input 2 HIT IO filtering P0_13 P0.13 HALL INTERFace input 2 ADCI_CIII3 ADCI Channel 13 CMP0_JP3 Comparator 0 positive input 3 FLT IO filtering VP14 P0.14 CMP0_UDT Comparator 0 Output MCPWM, BKIN1 PWM Shutdown Input Signal 1 UARD_TXD Serial port 0 send (receive) SILLK SPI clock SILLK SPI clock TIM0_CII1 Timer0 channel 1 QEP1_Z Phase Z of QEP1 encoder SIF Single line communication CUUTO CUD output ADC_CIRIO ADC0 channel 10 CMP0_IP4 Comparator 0 positive input 4 PLT Io filtering FIT Io filtering Extrand QPD		_	
3TIM3_CH1Timer3 channel 1ADC1_CH12ADC1 Channel 12MP0_IP2Comparator 0 positive input 2PLT10 filteringPLT10 filteringHALL_INZHALL interface input 2QEP0_ZQEP0 Encoder Phase ZADC1_CH13ADC1 Channel 13CMP0_IP3Comparator 0 positive input 3FI.T10 filteringP0_14P0.14CMP0_UTCComparator 0 outputCMP0_UTCComparator 0 OutputCMP0_UTCSerial port 0 send (receive)SP1_CLKSP1 dockSCL12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderSIFSingle line communicationCLIOUTOCLIO Outpiger signal output (for debugging)SIFSingle line communicationCLIOUTOCLUO outputADC_CH10ADC Channel 10CMP0_IP4Comparator 0 positive input 4PUBuilt-in 10K pull-up resistor, software switchablePUBuilt-in 10K pull-up resistor, s			
A A ADC1 CH12ADC1 Channel 12CMP0.JP2Comparator 0 positive input 2FLTI0 filteringFLTI0 filteringP0.13P0.13HALL,N2HALL interface input 2QEP0.C.QEP0 Encoder Phase Z.ADC1,CH13ADC1 Channel 13CMP0.P3Comparator 0 positive input 3FLTI0 filteringP0.14P0.14CMP0.UTComparator 0 outputMCPWM,BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SF1CLKSP1 ClockSCL12 C clockTIM0.CH1Timer0 channel 1QEP1.ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLU0UTOCLU0 outputADC_CTI10ADC0 Channel 10CMP0.JP4Comparator 0 positive input 4FLTI0 filteringEXTBExternal wake-up signal 8WK4External wake-up signal 4PUWIA1+ in 10K1 pull-up resistor, software switchablePUBuilt-in 10K1 pull-up resistor, software switchablePUSifiltTimer0 channel 1ADC0.CH11ADC1 Channel 1.ADTCock output (for debugging)GLK0Cock output (for debugging)GLK0Cock output (for debugging)GLK0Cock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0.CH0Timer0 channel 1ADC1.RIGGER1ADC1 trigger signa			-
CMP0.JP2Comparator 0 positive input 2FLT10 filteringFLT10 filteringP0.13P0.13HALL INEHALL interface input 2QEP0.ZQEP0 Encoder Phase ZADC1_CH13ADC1 Channel 13CMP0.JP3Comparator 0 positive input 3FLT10 filteringP0.14P0.14CMP0_OUTComparator 0 outputMCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPL_CLKSPI clockSCL12 CclockTM0_CH1Timer0 channel 1QEP1.ZPhase Z of QEP1 encoderSFSingle line communicationCLUOUTOCLUO outputADC_TRIGGER0ADC0 trigger signal output (for debugging)SFSingle line communicationCLUOUTOCLUO channel 10CM0_CH11Dinterrupt Signal 8WK4External wake-up signal 4PUBuilt-in 104R pul-lup resistor, software switchablePUBuilt-in 104R pul-lup resistor, software switch	3		
FLTIO filteringP0_13P0.13HALL_INZHALL interface input 2QEP0.Z.QEP0 Encoder Phase Z.ADC1_CI113ADC1 Channel 13CMP0_P3Comparator 0 positive input 3FLTIO filteringP0_14P0.14CMP0_OUTComparator 0 OutputMCPWM_BKIN1PVM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPL_CLKSPI clockSCI.12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSing line communicationCLUOUTOCLU0 outputADC0_CH10ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringFLTIO filteringFLTIO filteringSIFExternal GPIO Interrupt Signal 8WK4External GPIO Interrupt Signal 8WK4External output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)LART0_TXDSerial port 0 send (receive)TIM0_CH1Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)ADC_TRIGGER1ADC1 trigg			
P0.13P0.13IALL.IN2IIALL interface input 2QEP0_ZQEP0 Encoder Phase ZAAC1_CH13ADC1 Chnnel 13CMP0_IP3Comparator 0 positive input 3FLTIO filteringP0.14P0.14CMP0_UUTComparator 0 OutputMCPVM_EKIN1PVM Shutdown Input Signal 1MART0_TXDSerial port 0 send (receive)SPL_CLKSPL clockSCL12C clockTIM0_CH1Timer 0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingel line communicationCLU00T0CLU0 outputADC0_CH10ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringFLTIO filteringFLT			
Ind.L.IN2IIALL interface input 2QEP0_ZQEP0 Encoder Phase ZADC1_CH13ADC1 Channel 13CMP0_JP3Comparator 0 positive input 3FLTI0 filteringP0_14P0.14CMP0_OUTComparator 0 OutputMCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPLCLKSPL cockSCLI2C clockTIM0_CH1Timer 0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLU00T0CLU0 outputADC_CN10ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FUTI0 filteringFUTI0 filteringEXTR8External GP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchableFUClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC_TRIGGER1ADC1 trigger signal output (for debugging)<			
4QEP0.ZQEP0 Encoder Phase ZADC1_CH13ADC1 Channel 13CMP0_IP3Comparator 0 positive input 3FLT10 filteringP0_14P0.14CMP0_OUTComparator 0 OutputMCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPI_CLKSPI clockSCL12C clockTIM0_CH1Timer 0 channel 1QEP1_ZPhase Z of QEP1 encoderQEP1_ZPhase Z of QEP1 encoderSIFSingle line communicationCLU0UT0CLU0 outputADC0_CRIGER0ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FUT10 filteringEXT18External GPI0 Interrupt Signal 8WK4External QAU-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchableTIM3_CH1Timer 0 channel 1ADC1_TRIGER1ADC1 trigger signal output (for debugging)LU01T1CLU1 outputADC1TRIGER1ADC1 trigger signal output (for debugging)CLW0Clock output (for debugging)LU01T1CLU1 outputADC_TRIGER1ADC1 trigger signal output (for debugging)CLW0Clock output (for debugging)CLW0Clock outputADC_TRIGER1ADC1 trigger signal output (for debugging)CLW0CLU01T1CLU1 outputADC2,TRIGER1ADC			
4 ADC1_CH13 ADC1 Channel 13 CMP0_IP3 Comparator 0 positive input 3 FLT I0 filtering P0_14 P0.14 MCPWM_BKIN1 PWM Shutdown Input Signal 1 UART0_TXD Serial port 0 send (receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH1 Timer0 channel 1 QEP1_Z Phase Z of QEP1 encoder ADC_TRIGER0 ADC0 trigger signal output (for debugging) SIF Single line communication CLUOUT0 CLU0 output ADC0_CATIO ADC0 Channel 10 CMP0_IP4 Comparator 0 positive input 4 FLT 10 filtering EXT18 External GPI0 Interrupt Signal 8 WK4 External Vake-up signal 4 PU Built-in 10kΩ pul-up resistor, software switchable P2_7 P2.7 P2.7 P2.7 CLK0 Clock output (for debugging) UART0_TXD Serial port 0 send (receive) TIM0_CH0 Timer3 channel 1 ADC_TRIGGER1 ADC1 trigg			
CMP0_IP3Comparator 0 positive input 3FLT10 filteringP0_14P0.14CMP0_OUTComparator 0 OutputMCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPLCLKSPL clockSCL12C clockSCL12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUTOCLU0 outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTI0 filteringEXT18External QPI0 Interrupt Signal 8WK4External QPI0 Interrupt Signal 8WK4External QPI0 Interrupt Signal 8VK4External QPI0 To send (receive)TIM0_CH0Timer0 channel 0TIM0_CH1Timer0 channel 1ADC.TRIGER1ADC1 trigger signal output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC.TRIGER1ADC1 trigger signal output (for debugging)CLBOUT1CLU1 outputADC.TRIGER1ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LD0 OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11	4		
FLTIO filteringPLTIO filteringP0_14P0.14CMP0_OUTComparator 0 OutputMCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPI_CLKSPI clckSPI_CLKSPI clckSCL12C clockTM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLU0UT0CLU0 outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringEXTI8External OPIO Interrupt Signal 8WK4External OPIO Interrupt Signal 8WK4External OPIO Interrupt Signal 9UART0_TXDSerial port 0 send (receive)TM0_CH0Timer0 channel 0TIM0_CH0Timer0 channel 0TIM0_CH0Timer0 channel 0TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLK0Clock output (for debugging)QLART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM0_CH1Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLK0CLK0 Channel 11ADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LDO OutputREFReference VoltageEXT11External GPIO Interrupt Signal 11			
P0.14P0.14CMP0_OUTComparator 0 OutputMCPWM_BKIN1PVM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPI_CLKSPI_clckSCL12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUTOCLU0 outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLT10 filteringEXT18External GPI0 Interrupt Signal 8WK4External GPI0 Interrupt Signal 4PUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchableTIM0_CH0Timer0 channel 1ADC1_TRIGER1ADC1 trigger signal output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC1_TRIGER1ADC1 trigger signal output (for debugging)ADC1_TRIGER1ADC1 trigger signal output (for debugging)ADC1_TRIGER1ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LD0 OutputREFReference VoltageEXT111External GPI0 Interrupt Signal 11			
CMP0_0UTComparator 0 OutputMCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPL_CLKSPL clockSCL12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUT0CLU0 outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FIT10 filteringEXTI8External GP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kf1 pull-up resistor, software switchablePUBuilt-in 10kf1 pull-up resistor, software switchableVK4External wake-up signal 4PUSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)UART0_TXDSerial port 0 send (receive)TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLIOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LD0 OutputREFReference VoltageEXT111External GP10 Interrupt Signal 11			
MCPWM_BKIN1PWM Shutdown Input Signal 1UART0_TXDSerial port 0 send (receive)SPLCLKSPL clockSCLI2C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLU0UT0CLU0 outputADC_CH10ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FLTI0 filteringEXT18External QP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10k0 pull-up resistor, software switchableP2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC_TRIGGER1ADC1 trigger signal output (for debugging)ADC_TRIGGER1ADC1 trigger signal output (for debugging)OFA_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11			
UART0_TXDSerial port 0 send (receive)SPLCLKSPL clockSCLI2C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUT0CLU0 outputADC_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTI0 filteringEXT18External QP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10K0 pull-up resistor, software switchableP2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH111ADC0 channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11			
SPLCLKSPI clockSCL12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUT0CLU0 outputADC_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLT10 filteringEXT18External GPI0 Interrupt Signal 8WK4External GPI0 Interrupt Signal 4PUBuilt-in 10kΩ pul-up resistor, software switchableP2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)ADC_TRIGGER1ADC1 trigger signal output (for debugging)ADC_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11			
ActionCL12C clockTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLU0UT0CLU0 outputADC_CH10ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FLT10 filteringEXT18External GPI0 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchableIMA_C_TRIGGER1ADC1 trigger signal output (for debugging)TIM3_CH1Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC_CH11ADC0 channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11			
FTIM0_CH1Timer0 channel 1QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLU0UT0CLU0 outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringEXT18External GPI0 Interrupt Signal 8WK4External GPI0 Interrupt Signal 4PUBuilt-in 10kΩ pull-up resistor, software switchableVK4External ot enceive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)UURT0_TXDSerial port 0 send (receive)TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC_TRIGGER1ADC0 channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11			
QEP1_ZPhase Z of QEP1 encoderADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUT0CLU0 outputADC0_CH10ADC0 channel 10CMP0_IP4Comparator 0 positive input 4FLTI0 filteringEXTI8External GPI0 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchablePLClck output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LD0 OutputREFReference VoltageEXT11External GPI0 Interrupt Signal 11			
ADC_TRIGGER0ADC0 trigger signal output (for debugging)SIFSingle line communicationCLUOUT0CLUO outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTI0 filteringEXT18External GP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ pull-up resistor, software switchableVART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LDO OutputREFReference VoltageEXT11External GP10 Interrupt Signal 11			
SIFSingle line communicationCLUOUTOCLUO outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringEXTI8External GPIO Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchableP2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXT11External GPIO Interrupt Signal 11	5	-	
CLUOUTOCLUO outputADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringEXT18External GPIO Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchablePUBuilt-in 10kΩ comparator 0 send (receive)CLK0Clock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 1ADC1_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXT11External GPIO Interrupt Signal 11	-		
ADC0_CH10ADC0 Channel 10CMP0_IP4Comparator 0 positive input 4FLTIO filteringEXT18External GP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10k0 pull-up resistor, software switchableP2_7P2.7CLK0Clock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC0_TRIGGER1ADC1 trigger signal output (for debugging)ADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXT11External GP10 Interrupt Signal 11		-	
CMP0_IP4Comparator 0 positive input 4CMP0_IP4Comparator 0 positive input 4FLTIO filteringEXT18External GP10 Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchableP2_7P2.7CLK0Clock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputID0151.5V LDO OutputREFReference VoltageEXT11External GP10 Interrupt Signal 11			
FLTIO filteringEXT18External GPIO Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchableP2_7P2.7CLK0Clock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXT111External GPIO Interrupt Signal 11			Comparator 0 positive input 4
EXT18External GPIO Interrupt Signal 8WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchableP2_7P2.7CLK0Clock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLU0UT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputREFReference VoltageEXT111External GPIO Interrupt Signal 11			
WK4External wake-up signal 4PUBuilt-in 10kΩ pull-up resistor, software switchableP2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXTI11External GPI0 Interrupt Signal 11		EXTI8	
PUBuilt-in 10kΩ pull-up resistor, software switchableP2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXTI11External GPI0 Interrupt Signal 11			
P2_7P2.7CLKOClock output (for debugging)UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11		PU	
UART0_TXDSerial port 0 send (receive)TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)6CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LDO OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11		P2_7	
TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11		CLKO	Clock output (for debugging)
TIM0_CH0Timer0 channel 0TIM3_CH1Timer3 channel 1ADC_TRIGGER1ADC1 trigger signal output (for debugging)CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11		UART0_TXD	Serial port 0 send (receive)
ADC_TRIGGER1ADC1 trigger signal output (for debugging)6CLUOUT1CLU1 outputADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11			Timer0 channel 0
6 CLUOUT1 CLU1 output ADC0_CH11 ADC0 Channel 11 OPAx_OUT Op Amp Output LD015 1.5V LD0 Output REF Reference Voltage EXTI11 External GPIO Interrupt Signal 11		TIM3_CH1	Timer3 channel 1
ADC0_CH11ADC0 Channel 11OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11		ADC_TRIGGER1	ADC1 trigger signal output (for debugging)
OPAx_OUTOp Amp OutputLD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11	6	CLUOUT1	CLU1 output
LD0151.5V LD0 OutputREFReference VoltageEXTI11External GPIO Interrupt Signal 11		ADC0_CH11	ADC0 Channel 11
REF Reference Voltage EXTI11 External GPIO Interrupt Signal 11		OPAx_OUT	Op Amp Output
EXTI11 External GPIO Interrupt Signal 11		LDO15	1.5V LDO Output
		REF	Reference Voltage
WK6 External wake-up signal 6		EXTI11	External GPIO Interrupt Signal 11
		WK6	External wake-up signal 6

	PU	Built-in $10k\Omega$ pull-up resistor, software can be turned off
7	VDD	Supply voltage of devices in the chip, 5V LDO output
8	VCC	Full-bridge drive power supply
9	H01	Phase A high-side output is controlled by MCU P1.7, and the polarity of HO1 is the same as $P1.7$ that is use of $P1.7 = 1$, $P0.1 = 1$,
		as P1.7, that is, when P1.7 = 1, HO1 = 1. PWM_SWAP = 1 needs to be set.
10	L01	Phase A low-side output, controlled by MCU P1.4, LO1 polarity is the same as P1.4, that is,
		when P1.4 = 1, LO1 = 1. PWM_SWAP = 1 needs to be set.
11	H02	Phase B high-side output is controlled by MCU P1.8. The polarity of HO2 is the same as P1.8. That is, when P1.8 = 1, HO2 = 1. PWM _ SWAP = 1 needs to be set.
		P1.8. That is, when P1.8 = 1, HO2 = 1. PWM_SWAP = 1 needs to be set. Phase B low-side output, controlled by MCU P1.5, LO2 polarity is the same as P1.5, that is,
12	L02	when $P1.5 = 1$, $LO2 = 1$. $PWM _ SWAP = 1$ needs to be set.
		Phase C high-side output is controlled by MCU P1.9. The polarity of HO3 is the same as
13	НО3	Phase C high-side output is controlled by MCO P1.9. The polarity of HOS is the same as $P1.9$, that is, when $P1.9 = 1$, $HO3 = 1$. $PWM _SWAP = 1$ needs to be set.
		Phase C low-side output, controlled by MCU P1.6, LO3 polarity is the same as P1.6, that is,
14	L03	when $P1.6 = 1$, $LO3 = 1$. $PWM_SWAP = 1$ needs to be set.
		Chip ground. It is strongly recommended that multiple ground pins be grounded uni-
15	GND	formly on the PCB.
	P3_10	P3.10
16	MCPWM_CH4P	PWM Channel 4 High Side
10		
	OPA2_IP	Positive input of operational amplifier 2
17	P3_11	P3.11
17	MCPWM_CH4N	PWM Channel 4 Low Side
	OPA2_IN	Op Amp 2 Negative Input
18	P3_14	P3.14
	OPA3_IN	Op Amp 3 Negative Input
19	P3_15	P3.15
	OPA3_IP	Positive input of operational amplifier 3
	P2_4	P2.4
	CMP0_OUT	Comparator 0 Output
	HALL_IN0	HALL interface input 0
	MCPWM_CH2P	PWM Channel 2 High Side
	UART1_RXD	Serial port 1 receive (send)
	SPI_CLK	SPI clock
20	TIM1_CH0	Timer1 channel 0
	TIM2_CH0	Timer2 channel 0
	ADC_TRIGGER0	ADC0 trigger signal output (for debugging)
	CMP1_IP1	Comparator 1 positive input 1
	FLT	IO filtering
	EXTI14	External GPIO Interrupt Signal 14
	WK5	External wake-up signal 5
	PU	Built-in 10kΩ pull-up resistor, software switchable
21	P2_5	P2.5
	CMP1_OUT	Comparator 1 Output

	HALL_IN1	HALL interface input 1
	 MCPWM_CH2N	PWM Channel 2 Low Side
	UART1_TXD	Serial port 1 send (receive)
	SPI_DO	SPI Data Output (Input)
	TIM1_CH1	Timer1 channel 1
	TIM2_CH1	Timer2 channel 1
	ADC_TRIGGER1	ADC1 trigger signal output (for debugging)
	 CMP1_IP2	Comparator 1 positive input 2
	FLT	IO filtering
	PU	Built-in $10k\Omega$ pull-up resistor, software switchable
	P2_6	P2.6
	CMP2_OUT	Comparator 2 Output
	HALL_IN2	HALL interface input 2
	MCPWM_CH3P	PWM Channel 3 High Side
	TIM0_BKIN	TIMER0_FAIL com from GPIO
	TIM3_CH0	Timer3 channel 0
	ADC_TRIGGER0	ADC0 trigger signal output (for debugging)
	SIF	Single line communication
22	CLUOUT0	CLU0 output
	CMP1_IP3	Comparator 1 positive input 3
	FLT	IO filtering
	P2_14	P2.14
	SWCLK	SWD clock
	SPI_DI	SPI Data In (Out)
	SCL	I2C clock
	PU	Built-in 10kΩ pull-up resistor, software switchable
	P0_0	P0.0
	CLKO	Clock output (for debugging)
	MCPWM_BKIN0	PWM shutdown input signal 0
	UART0_RXD	Serial port 0 receive (send)
	SPI_DI	SPI Data In (Out)
	CLUOUT0	CLU0 output
	ADC0_CH4	ADC 0/ADC1 Channel 4
	DAC01_OUT	DAC0 output
23	DAC1_OUT	DAC1 Output
	FLT	IO filtering
	EXTI0	External GPIO Interrupt Signal 0
	WK0	External wake-up signal 0
	PU	Built-in $10k\Omega$ pull-up resistor, software switchable
	P2_15	P2.15
	SWDIO	SWD data
	UART0_RXD	Serial port 0 receive (send)
	SPI_CS	SPI chip select

	SDA	I2C data
	TIM2_CH1	Timer2 channel 1
	CLUOUT1	CLU1 output
	EXTI15	External GPIO Interrupt 15
	WK7	External wake-up signal 7
	PU	Built-in $10 k\Omega$ pull-up resistor, software switchable
	P0_2	P0.2
	CLUOUT1	CLU1 output
		Reset pin, P0.2 used as RSTN by default. It is recommended to connect a 10 nF to 100 nF
	DCT »	capacitor to ground and place a 10 K to 20 K pull-up resistor between RSTN and AVDD. If
24	RST_n	there is an external pull-up resistor, the capacitance of RSTN should be 100 nF. P0.2 can
24		be switched as a GPIO, which turns off the 10 $k\Omega$ pull-up resistor.
	FLT	IO filtering
	EXTI2	External GPIO Interrupt Signal 2
	WK1	External wake-up signal 1
	PU	Built-in $10k\Omega$ pull-up resistor, software switchable

3.2 Description of Pin Multiplex Function

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF0
													ADC01_CH4/
P0.0	CLKO		MCPWM_BKIN0	UART0_RXD	SPI_DI							CLUOUT0	DAC0_OUT/
													DAC1_OUT
P0.1													ADC01_CH6
P0.2												CLUOUT1	
P0.3			MCPWM_CH4P			SCL		TIM2_CH0					ADC01_CH7
P0.4			MCPWM_CH4N			SDA		TIM2_CH1					ADC01_CH8
P0.5		HALL_IN0	MCPWM_CH5P					QEP0_Z					ADC01_CH9
P0.6		HALL_IN1	MCPWM_CH5N	UART1_RXD		SCL	TIM1_CH0			CAN_RX			CMP2_IN
P0.7		HALL_IN2	MCPWM_BKIN1	UART1_TXD		SDA	TIM1_CH1			CAN_TX			CMP2_IP0
P0.8													
P0.9						SCL		TIM2_CH0					
P0.10						SDA		TIM2_CH1					
D0.14								TIMO CHO					ADC1_CH11/
P0.11		HALL_IN0						TIM3_CH0					CMP0_IP1
P0.12		HALL INT						TIM2 CU1		CAN DY			ADC1_CH12/
P0.12		HALL_IN1						TIM3_CH1		CAN_RX			CMP0_IP2
P0.13		HALL INC						OEDO 7		CAN_TX			ADC1_CH13/
P0.13		HALL_IN2						QEP0_Z		CAN_IX			CMP0_IP3
P0.14	CMP0_OUT		MCPWM_BKIN1	UART0_TXD	SPI_CLK	SCL	TIM0_CH1	QEP1_Z	ADC_TRIGGER0		SIF	CLUOUTO	ADC0_CH10/
10.14	CMI 0_001		MOI WM_DKINI		JI I_CLK	301		QEI 1_2	ADC_INIGGERU		511	6100010	CMP0_IP4
P0.15	CMP2_OUT		MCPWM_CH0P	UART0_RXD	SPI_DO	SDA	TIM0_CH0		ADC_TRIGGER1				CMP0_IN

Table 3-2 LKS32MC07X Pin Function Selection

LKS32MC07X with built-in 3P3N driver Datasheet

Pin Assignment

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF0
P1.0			MCPWM_CH0N	UART0_TXD	SPI_DI		TIM0_BKIN						
P1.1					SPI_CS								
P1.2								TIM3_CH0					
P1.3								TIM3_CH1					ADC01_CH5
P1.4			MCPWM_CH0P					QEP0_Z					
P1.5			MCPWM_CH0N										
P1.6			MCPWM_CH1P										
P1.7			MCPWM_CH1N										
P1.8			MCPWM_CH2P										
P1.9			MCPWM_CH2N										
P1.10			MCPWM_CH3P	UART0_RXD		SCL	TIM0_CH0		ADC_TRIGGER0				ADC0_CH13
P1.11			MCPWM_CH3N	UART0_TXD		SDA	TIM0_CH1		ADC_TRIGGER1		SIF	CLUOUT2	
P1.12													
P1.13			MCPWM_CH5P		SPI_CLK		TIM0_CH0						
P1.14			MCPWM_CH5N		SPI_DO		TIM0_CH1						
P1.15			MCPWM_CH4P		SPI_DI			TIM2_CH0					

Table 3-3 LKS32MC07X Pin Function Selection (continued)

LKS32MC07X with built-in 3P3N driver Datasheet

Pin Assignment

								-	-				
Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF0
P2.0			MCPWM_CH4N		SPI_CS			TIM2_CH1					
P2.1					SPI_CLK								ADC1_CH10/
													CMP1_IP0
P2.2								QEP1_Z					CMP1_IN
P2.3	CMP1_OUT		MCPWM_BKIN0		SPI_CS		TIM0_CH1	QEP0_Z				CLUOUT3	
P2.4	CMP0_OUT	HALL_IN0	MCPWM_CH2P	UART1_RXD	SPI_CLK		TIM1_CH0	TIM2_CH0	ADC_TRIGGER0	CAN_RX			CMP1_IP1
P2.5	CMP1_OUT	HALL_IN1	MCPWM_CH2N	UART1_TXD	SPI_DO		TIM1_CH1	TIM2_CH1	ADC_TRIGGER1	CAN_TX			CMP1_IP2
P2.6	CMP2_OUT	HALL_IN2	MCPWM_CH3P				TIM0_BKIN	TIM3_CH0	ADC_TRIGGER0		SIF	CLUOUTO	CMP1_IP3
													ADC0_CH11/
P2.7	CLKO			UART0_TXD			TIM0_CH0	TIM3_CH1	ADC_TRIGGER1	CAN_TX		CLUOUT1	OPAx_OUT/
													LDO15/REF
P2.8				UART1_RXD	SPI_DO			TIM3_CH0					OSC_IN
50.0													ADC0_CH12/
P2.9			MCPWM_CH5P		SPI_DI	SCL							CMP0_IP0
P2.10			MCPWM_CH5N		SPI_DO	SDA							
P2.11			MCPWM_CH1P					TIM2_CH0					CMP2_IP1
P2.12			MCPWM_CH1N		SPI_CS			TIM2_CH1	ADC_TRIGGER0			CLUOUT3	
P2.13			MCPWM_CH3N	UART0_TXD	SPI_DO	SCL		TIM3_CH1					
P2.14	SWCLK				SPI_DI	SCL							
P2.15	SWDIO			UART0_RXD	SPI_CS	SDA		TIM2_CH1				CLUOUT1	

Table 3-4 LKS32MC07X Pin Function Selection (continued)

LKS32MC07X with built-in 3P3N driver Datasheet

Pin Assignment

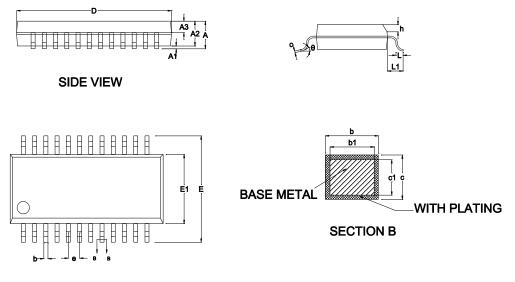

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF0
P3.0													OPA1_IP
P3.1													OPA1_IN
P3.2			MCPWM_CH3P									CLUOUT2	
P3.3													
P3.4			MCPWM_CH3N										
P3.5													OPA0_IP
P3.6													
P3.7													OPA0_IN
P3.8													
P3.9				UART1_TXD				TIM3_CH1					OSC_OUT
P3.10			MCPWM_CH4P										OPA2_IP
P3.11			MCPWM_CH4N										OPA2_IN
P3.12													
P3.13													
P3.14													OPA3_IN
P3.15													OPA3_IP

Table 3-5 LKS32MC07X Pin Function Selection (continued)

4 Package size

SSOP24L Profile Quad Flat Package:

TOP VIEW

Fig.4-1 LKS32MC077EM6S8 Package Diagram

		MILLIMETER	
SYMBOL	MIN	NOM	MAX
А	-	-	1.75
A1	0.10	0.15	0.25
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.23	-	0.31
b1	0.22	0.25	0.28
С	0.20	-	0.24
c1	0.19	0.20	0.21
D	8.55	8.65	8.75
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		0.635BSC	
h	0.30	-	0.50
L	0.50	-	0.80
L1		1.05REF	
θ	0	-	8°

Table 4-1 LKS32MC077EM6S8 Package Dimension

5 Analog Characteristics

Table 5-1 LKS32MC077EM6S8 analog characteristics							
Parameter	Min.	Тур.	Max.	Unit	Explain		
	1	alog-to-d	-				
Power Supply	3.3	5	5.5	V	ADC use 2.4V internal reference		
	2.8	5	5.5	V	ADC use 1.2V internal reference		
Sampling rate		3		MHz	fadc/16		
	-5.0		+5.0	V	When ADCx_GAIN = 1; REF=2.4V;		
Differential Input Signal	+0.144		-0.144				
Range	-3.6		+3.6	V	When ADCx_GAIN = 0; REF=2.4V;		
	+0.072		-0.072				
Single-ended Input Sig-	-0.3		AVDD	V	Limited by the input voltage of the		
nal Range			+0.3		IO port		
_	-	-	-		OPA inside the chip to the ADC; Sin-		
	-	•	-		put: The ADC should measure the sig-		
-				-	ess of the internal/external reference		
-	-	external r	eference,	it is rec	ommended that the sampling conduc-		
tor not exceed 90% of the	scale.						
DC offset		5	10	mV	Correctable		
Effective number of bits	10.5	11		bit			
(ENOB)							
INL		2	3	LSB			
DNL		1	2	LSB			
SNR	63	66		dB			
Input Resistance	100k			Ohm			
Input Capacitance		10		pF			
		Refere	nce Volta	ge (REF)		
Power Supply	2.2	5	5.5	V			
Output Deviation	-9		9	mV			
Rejection Ratio of Pow-		70		dB			
er Supply		70		uD			
Temperature Coefficient		20		ppm			
		20		/°C			
Output Voltage		1.2		V			
	Dig	ital-to-A	nalog Coi	werter	(DAC)		
Power Supply	2.2	5	5.5	V			
Load Resistance	5k			Ohm			
Load capacitance			50p	F			
Outrout valte extreme	0.05		AVDD-	17	Output BUFFER is on		
Output voltage range	0.05		0.1	V			
Conversion speed			1M	Hz			

Table 5-1 LKS32MC077EM6S8 analog characteristics

Parameter	Min.	Тур.	Max.	Unit	Explain	
DNL		1	2	LSB		
INL		2	4	LSB		
OFFSET		5	10	mV		
SNR	57	60	66	dB		
		Operatio	nal Ampl	ifier (Ol	PA)	
Power Supply	2.8	5	5.5	V		
Bandwidth		10	20	MHz		
Load Resistance	20k			Ohm		
Load Capacitance			5p	F		
Input Common Mode	0					
Voltage Range (VICM)	0		AVDD	V		
Output Signal Range	0		2Vcm	V	Under minimum load resistance	
Common Mode Voltage (Vcm)	1.67	1.8	2.2	V	Measurement condition: normal temperature. Operational amplifier swing=2 × min(AVDD-Vcm, Vcm). It is recommended that the applica- tion using OPA single output should be powered on to measure Vcm and make software subtraction correc- tion. For more analysis, please refer to the official website application note "ANN009 - Differences between Operational Amplifier Differential and Single Operating Mode". 32 times	
		10	16.5	mV	16 times	
OFFSET		10	18.5	mV	8 times	
		10	20.5	mV	4 times	
Image: This OFFSET is the equivalent differential input deviation obtained when the OPA differential input is short-circuited and OPA OUT is measured from 0 level. The output deviation of OPA is OPA magni- fication x OFFSET. The Flash NVR area records the OPA offset for factory tests.Common Mode Rejec-Image: Common Mode Rejec-						
tion Ratio (CMRR)		80		dB		
Power Supply Rejection						
Ratio (PSRR)		80		dB		
Load Current			500	uA		
Slew Rate		5		V/us		
Phase Margin (PM)		60		De- gree		
			parator	(CMP)		
Power Supply	2.2	5	5.5	V		

Analog Characteristics

Parameter	Min.	Тур.	Max.	Unit	Explain
Input Signal Range	0		AVDD	V	
	-30	-10	10	mV	0 mV hysteresis, CMP output transi- tions from low to high
OFFE	-30	-10	10	mV	0 mV hysteresis, CMP output transi- tions from high to low
OFFSET	-30	-10	10	mV	20 mV hysteresis, CMP output tran- sitions from low to high
	-8.5	11.5	31.5	mV	20 mV hysteresis, CMP output tran- sitions from high to low
Deley		50		nS	Default power consumption
Delay		200		nS	Low power consumption
Hustorogia		20		mV	HYS='0'
Hysteresis		0		mV	HYS='1'

Analog register table description:

The names of the analog registers are SYS_AFE_REG0 to SYS_AFE_REG6, corresponding to addresses 0x4000 0010 to 0x4000_0028. Address 0x4000_001C to 0x4000_0028 are the calibration registers of each analog module. These registers will fill their respective calibration values into the Flash info area before leaving the factory, and will be automatically loaded to the SYS_AFE_REG3 to SYS_AFE_REG6 after power-on. In general, the user should not configure or change these values. If fine-tuning is required, please read the original settings first, and then adjust based on those values.

Addresses space of 0x4000_0000 to 0x4000_0018 are registers open to users. The blank registers must be configured to 0 (these registers will be reset to 0 after power on). Other registers could be configured in situations.

6 Electrical performance parameters

Parameter	Min.	Max.	Unit	Explain
		-	Unit	пураш
MCU Power Supply Voltage (AVDD)	-0.3	+6.0	V	
Gate Driver Power Supply Voltage (VCC)	-0.3	+40.0	V	
5V LDO output current		40	mA	
Operating temperature	-40	+105	°C	
Storage temperature	-40	+150	°C	
Junction temperature	-	125	°C	
Pin temperature (soldering for 10 seconds)	-	260	°C	

Table 6-1 LKS32MC077EM6S8 electrical absolute characteristics

 Table 6-2 LKS32MC077EM6S8 Recommended working condition parameters

Parameter	Mini.	Тур.	Max.	Unit	Explain
MCU Power Supply Voltage (AVDD)	2.5	5	5.5	V	
Analog Power Supply Voltage	3.3	5	5.5	V	REF2VDD = 0, ADC selects 2.4 V internal reference
(AVDD _A)	2.8	5	5.5	V	REF2VDD = 1, ADC selects AVDD as reference
Gate Driver Power supply voltage (VCC)	7.5		32	V	When VCC < 7.5V, 3P3N Gate driver will be shut down while MCU could still work normally

Table 6-3 LKS32MC077EM6S8 ESD Parameters

Item	Pin	Minimal	Max	Unit
ECD To at (UDM)	MCU(Pin 1-6,16-24)	-6000	6000	V
ESD Test (HBM)	Pre Driver (Pin 7-15)	-2000	2000	V

According to "MIL-STD-883J Method 3015.9", under the environment of 25°C and 55% relative humidity, electrostatic discharge is applied to all IO pins of the tested chip for 3 times, with an interval of 1s each time. The test results show that the anti-static discharge level of the chip reaches Class $3A \ge 4000V$, < 8000V.

Table 6-4 LKS32MC077EM6S8 Latch-up parameters

Item	Minimal	Max	Unit
Latch-up current (85 °C)	-200	200	mA

According to "JEDEC STANDARD NO.78E NOVEMBER 2016", an overvoltage of 8 V is applied to all power supply IOs, and a current of 200 ma is injected on each signal IO. The test results show that the anti-latch-up level of the chip is 200 mA.

Table 6-5 LKS32MC077EM6S8 IO absolute characteristics

Parameter Description	Min.	Max.	Unit
-----------------------	------	------	------

V _{IN}	GPIO Signal Input Voltage Range	-0.3	6.0	V
HO _x	HO_x (x=1~3) input voltage range	VCC-15	VCC	V
LO _x	$LO_x(x=1\sim3)$ input voltage range	-0.3	15	V
I _{INJ_PAD}	Maximum Injection Current of A Single GPIO	-11.2	11.2	mA
I _{INJ_SUM}	Maximum Injection Current of All GPIOs	-50	50	mA

Table 6-6 LKS32MC077EM6S8 IO DC Parameters

Parameter	Description	AVDD	Conditions	Min.	Max.	Unit
V	High input lovel of digital IO	5V		3.06		V
VIH	High input level of digital IO	3.3V	-	2.07		V
V	Low input loval of digital IO	5V			0.3*AVDD	v
V _{IL}	Low input level of digital IO	3.3V	-		0.8	v
V	Sohmidt hystoresis range	5V		0.1*AVDD		v
V _{HYS}	Schmidt hysteresis range	3.3V	-	0.1 [·] AV DD		v
т	Digital IO current consumption	5V			1	
I _{IH}	when input is high	is high 3.3V			1	uA
Ţ	Digital IO current consumption	5V		1		0
I _{IL}	when input is low	3.3V	-	-1		uA
V _{OH}	High output level of digital IO		Current =	AVDD-0.8		v
V OH	High output level of digital 10		11.2mA	AV DD-0.0		v
V _{OL}	Low output level of digital IO		Current =		0.5	v
V OL			11.2mA		0.5	v
R _{pup}	Pull-up resistor*			8	12	kΩ
R _{io-ana}	Connection resistance between IO			100	200	Ω
INIO-ana	and internal analog circuit			100	200	30
C _{IN}	Digital IO Input-capacitance	5V			10	pF
CIN	Digital to input-capacitance	3.3V	-		10	h

Table 6-7 LKS32MC07x Module Current/IDD

模块	Min	Тур	Max	单位
Comparator x1		0.005		mA
OPA x1		0.450		mA
ADC		3.710		mA
DAC		0.710		mA
Temp Sensor		0.150		mA
Band-Gap		0.154		mA
4MHz RC Clock		0.105		mA
PLL		0.080		mA
CPU+flash+SRAM (96MHz)		8.667		mA

CPU+flash+SRAM (12MHz)		1.600		mA
CRC		0.070		mA
DSP		3.421		mA
UART		0.107		mA
DMA		1.340		mA
MCPWM		0.053		mA
TIMER		0.269		mA
SPI		0.500		mA
IIC		0.500		mA
CAN		2.200		mA
MCU Sleep Mode	9	12	20	uA

7 Power Management System

The power management system is composed of LDO15 module, power detection module (PVD), power-on/power-off reset module (POR).

The chip is powered by a $7.5V \sim 32V$ single supply to save the power supply costs outside the chip. An internal LDO5 supply the power of MCU. And all internal digital circuits and PLL modules in the MCU are powered by an internal LDO15.

The LDO15 automatically turns on after power-on, without software configuration, and the LDO output voltage can be adjusted through software.

The output voltage of LDO15 can be adjusted by setting register LDO15TRIM <2:0>. The corresponding value of the register can be seen in the analog register table. LDO15 has been calibrated before it leaves the factory. Generally, users do not need to configure these registers again. If fine-tuning of the LDO output voltage is required, please read the original configuration value first, and then add the configuration value corresponding to the fine-tuning amount to the register.

The POR module monitors the voltage of the LDO15. When the voltage of the LDO15 is lower than 1.1V, for example, at the beginning of power-on or at the time of power-off, it will provide a reset signal for the digital circuit to avoid any abnormal operation.

The PVD module detects the 5V input power supply, and generates an alarm (interrupt) signal to remind MCU if it is lower than a certain set threshold. The interrupt alert threshold can be set to a different voltage using the PVDSEL<1:0> register. You can disable the PVD module by setting PD_PDT= '1'. See the analog register table description for the corresponding values of specific registers.

8 Clock system

The clock system consists of a 32KHz RC oscillator, a 8MHz RC oscillator, an external 8MHz crystal oscillator, and a PLL.

The 32K RC clock is used in the MCU system as a slow clock for modules such as reset/wakeup source filters or used in the low power mode; The 8MHz RC clock can be used as the main clock of the MCU, and can provide a reference clock to PLL. PLL clock is up to 96MHz; The external 8MHz crystal oscillator is used as a backup clock.

Both 32k and 8M RC clocks will been through factory calibration. In the range of -40 \sim 105 °C, the accuracy of the 32K RC clock is ±50%, and the accuracy of the 8M RC clock is ±1%.

The frequency of the 32K RC clock can be set by the register RCLTRIM<3:0>, and the frequency of the 8M RC clock can be set by the register RCHTRIM <5:0>. For the corresponding value of specific register, please refer to the analog register table.

The chip has been calibrated before it leaves the factory. Generally, users do not need to configure these registers again. If fine-tuning of the frequency is required, please read the original configuration value first, and then calculate the new settings accordingly.

The 8M RC clock is turned on by setting RCHPD = '0' (ON by default, turn off when set to "1'). The RC clock needs a reference voltage and current provided by the Bandgap voltage reference module; thus, do remember to turn on the BGP module before turning on the RC clock. When the chip is powered on, the 8M RC clock and BGP module are both turned on automatically. The 32K RC clock is always on and cannot be turned off.

The PLL multiplies the 8M RC clock to provide a higher frequency clock for modules like MCU and ADC. The highest frequency of MCU and PWM module is 96MHz, and the typical working frequency of ADC module is 48MHz. It can be set to different frequency by the register ADCLKSEL <1:0>.

PLL is turned on by setting PLLPDN = '1' (OFF by default, turn on when set to '1'). Before turning on the PLL module, the BGP (Bandgap) module should be turned on first. After the PLL is turned on, it needs a settling time of 6us to achieve a stable frequency output. When the chip is powered on, the RCH clock and BGP module are both turned on. PLL is OFF by default and could be enabled by software.

The crystal oscillator circuit has a built-in amplifier and an oscillator capacitor. Connect a crystal between IO OSC_IN/OSC_OUT and set XTALPDN = '1' to start the oscillation.

9 Voltage Reference

Reference voltage and current are provided for ADC, DAC, RC clock, PLL, temperature sensor, operational amplifier, comparator and FLASH. Before using any of the above modules, the BGP voltage reference should be turned on first.

When the chip is powered on, the BGP module is turned on automatically. The voltage reference is turned on by setting BGPPD = '0'. From OFF to ON, BGP needs about 6us to stabilize. BGP output voltage is about 1.2V, and accuracy is \pm 0.8%.

10 ADC module

The chip integrated a synchronous double-sampling SAR ADC which is shut down by default when the chip is powered up. Before turning on ADC, the BGP module, 8M RC clock and PLL should be turned on first. In the default configuration, ADC clock is 48MHz, which corresponds to a conversion rate of 3Msps.

The synchronous double sampling circuit can sample the two input analog signals at the same time. After the sampling is completed, the ADC converts the two signals one by one and writes them into the corresponding data registers.

ADC takes 16 ADC clock cycles to complete one conversion, of which 13 are conversion cycles and 3 are sampling cycles. I.E. $f_{conv}=f_{adc}/16$. When the ADC clock is set to 48MHz, the conversion rate is 3Msps.

When the ADC is working at a lower frequency, the power consumption can be reduced by setting register CURRIT<1:0>.

ADC could work in different modes: One-time single channel trigger mode, continuous single channel sampling mode, One-time 1 to 20 channels scanning mode, continuous 1 to 20 channels scanning mode. It has a set of 20 independent registers for each analog channel.

The ADC trigger can be MCPWM/Timer trigger signals T0, T1, T2 and T3 happened for the preset number of times, or software trigger event.

ADC _ DC stores the DC offset of ADC. Usually, in the calibration phase, the ADC DC offset value is obtained by measuring the AVSS (internal ground) of Channel 15 (counting from 0) and stored in flash. In the system loading phase, the DC offset is written into the ADC _ DC register by software.

The ADC has two ranges set by the ADC X _ GAIN (X = 0, 1): 3.6 V and 7.2 V. At the 7.2 V range, this corresponds to a maximum input signal amplitude of \pm 5 V because the chip is powered at 5 V. At the 3.6 V range, this corresponds to a maximum input signal amplitude of \pm 3.6 V. When measuring the output signal of an op amp, select the specific ADC gain based on the maximum signal that the op amp can output.

11 Operational Amplifier

4-channel of rail-to-rail OPAs are integrated, with a built-in feedback resistor R2/R1. A resistor R0 is required to be connected in series to the external pin. The resistance of feedback resistors R2:R1 can be adjusted by register RES_OPA0<1:0> to achieve different gain. For the corresponding value of specific register, please refer to the analog register table.

The close-loop gain of OPA is R2/(R1+R0), where R0 is the resistance of the external resistor.

For the application of MOS resistance direct sampling, it is recommended to connect an external resistance of >20k Ω to reduce the current flowing into the chip pin when the MOS is turned off;

For the application of small resistance sampling, it is recommended to connect an external resistor of 100Ω .

The OPA can select one of the output signals of the 4-channels amplifiers by setting OPAOUT_EN <2:0>, and send it to the P2.7 IO port through a buffer for measurement (see the corresponding relationship in the datasheet 'Pin Function Description"). Because of this buffer, the OPA is able to be output to an IO while operating normally.

When the chip is powered on, the OPA module is OFF by default. It can be turned on by setting OPAxPDN = '1', and turn on the BGP module before turning on the amplifier.

For built-in clamp diodes are integrated between the positive and negative OPA inputs, the motor phase line could be directly connected to the OPA input through a matching resistor, thereby simplifying the external circuit for MOSFET current sampling.

12 Comparator

Built-in 3-channel rail-to-rail comparators with programmable comparator speed, hysteresis voltage, and signal source.

The comparison delay of the comparator can be set to < 30 nS/200 nS through Register CMP _ FT. The hysteresis voltage is set to 20 mV/0 mV by the CMP _ HYS.

The comparator positive input signal source can be set by register CMPx _ SELP [2:0]; the comparator negative input signal source can be set by register CMPx _ SELN [1:0] (X = 0/1/2 for comparators CMP0/CMP1/CMP2) $_{\circ}$

When the chip is powered on, the comparator module is OFF by default. The comparator is turned on by setting CMPxPDN = '1', and turn on the BGP module before turning on the comparator.

13 Temperature sensor

The chip has a temperature sensor with an accuracy of $\pm 2^{\circ}$ C. The temperature sensor will be calibrated in factory, and the calibration value is saved in the flash info area.

When the chip is powered on, the temperature sensor module is OFF by default. Turn on the BGP module before turning on the temperature sensor.

The temperature sensor is turned on by setting TMPPDN = '1', and it takes about 2us to be stable after turning on. Thus, it should be turned on at least 2us ahead before the ADC measures the sensor output.

14 DAC module

The chip contains two 12-bit DACs, and the maximum range of the output signal can be set to 1.2 V/4.85 V using the DAC0 $_$ GAIN and DAC1 $_$ GAIN registers.

DAC0 can route the DAC0 output to the P0.0 pin through the configuration register DAC0OUT _ EN = 1, and DAC1 can route the DAC1 output to the P0.0 pin through the configuration register DAC1OUT _ EN = 1, which can drive a load resistor of > $5k\Omega$ and a load capacitance of 50pF. Normally, DAC0 and DAC1 are not output at the same time to avoid signal contention.

The maximum output bit rate of DAC is 1MHz.

When the chip is powered on, the DAC module is OFF by default. DAC0 can be turned on by setting DAC0PDN = 1, and DAC1 can be turned on by setting DAC1PDN = 1. Before turning on the DAC module, you need to turn on the BGP module.

15 Processor core

- > 32 bitCortex-M0 + DSP Dual Corp.Processor
- ➢ 2-wire SWD debug pin
- > Maximum operating frequency 96MHz

16 Storage resources

16.1 Flash

- ▶ built-in flash including 64kB/128kB main area and 1.5kB NVR
- Endurance: 100,000 Cycles(min)
- > Data retention: more than 100 years
- Single byte program: 7.5us(max), Sector erase: 5ms(max)
- Sector size 512bytes, supporting Sector erase/program and in-application program, erase/program one sector while accessing another
- Flash data anti-theft by programming the last word of flash to any words other than 0xFFFFFFFF

16.2 SRAM

built-in 12kB SRAM

17 MCPWM for motor drive

- > MCPWM operating frequency is up to 96MHz
- Supports up to 6 pairs (complementary signals) or 12 independent (edge mode) non-overlapping PWM signals, The width of dead-zone in each channel can be configured independently
- Support edge-aligned PWM
- Support software control IO mode
- Support IO polarity control
- > Internal short circuit protection to avoid short circuit due to configuration error
- > External short circuit protection, enabling fast shutdown by monitoring the external signals
- Internal ADC sampling interrupt
- > Preload MCPWM register configuration and update simutaneously
- Programmable load time and period

18 Timer

- ▶ 4-channel standard timer, 2-channel 16-bit timer, 2-channel 32-bit timer.
- Support capture mode for measuring external signal/pulse width
- > Support comparison mode for timed interruption of edge-aligned PWM

19 Hall sensor interface

- ➢ Built-in 1024 cycles filtering
- > 3-channel Hall signal input
- > 24-bit counter, with overflow and capture interrupt

20 General Purpose Peripheral

- Two UART, full-duplex operation, support 8/9 data bit, 1/2 stop bit, odd/even/no parity mode, with 1 byte tx buffer, 1 byte rx buffer, support Multi-drop Slave/Master mode, support 300 to 115200 baud rate
- > One SPI, support master-slave mode
- > One IIC, support master-slave mode
- ➤ Hardware watchdog, driven by 32kHz RC clock and which is independent of system high-speed clock, the minimum reset interval was 4096/32kHz≈128ms, and the maximum reset interval was 511×4096/32kHz≈64s.

21 Gate drive module

21.1 Module parameters

Symbol	Parameter	Typical	Max	Unit			
	Sta	tic parameters				-	
VCC_ON	VCC undervoltage recovery voltage		5.8	6.5	7.4	V	
VCC_UVLO	VCC Undervoltage Thresh- old Voltage		5.4	6	6.8	V	
VCC_HYS	Under-voltage voltage re- turn difference		0.3	0.5	0.8	V	
V _{HO}	V _{HO} HOx(x=1~3) outputs turn-on voltage (because HO drives PMOS, low level corresponds to turn-on)		VCC-11.5	VCC-10	VCC-8.5	V	
V_{LO}	LOx(x=1~3) output turn-on voltage		8.5	10	11.5	v	
I _{HO+}	HOx(x=1~3) output cur- rent	HOx=VCC-10V	-	300	-	mA	
I _{HO-}	Input sink current of HOx(x=1~3)	HOx=VCC	-	35	-	mA	
I _{LO+}	LOx(x=1~3) output current	LOx=0V	-	60	-	mA	
I _{LO-}	LOx(x=1~3) Input sink current	LOx=10V	-	300	-	mA	
T _{SD}	TSD temperature		-	150	-	°C	
TRECOVER	TSD recovery temperature		-	135	-	°C	
I_{LDO}	LDO power supply capabil- ity			40		mA	
Dynamic parameters (CL = 1 nF)							
T _{ON}	Conduction propagation delay		-	80	-		
T _{OFF}	Turn off transmission delay		-	30	-		
TH _R	HOx rise time		-	60	-		
TH_{F}	HOx fall time - 300		-	ns			
TL _R	LOx rise time		-	300	-	-	
TH_{F}	LOx fall time		-	60	-		
DT	Built-in dead time		-	50	-		

Table 21-1	Driver	module	narameter
Table 21-1	Driver	mouule	parameter

The input and output waveforms of the P/N MOS drive module are shown in the figure below. In the figure, HIN/LIN is the output signal of the MCPWM module inside the chip. For HIN, the output high level corresponds to the HO output low level, thus driving the high-drive PMOS to conduct. For LIN, the output high corresponds to the LO output high, which drives the low-drive NMOS on. Therefore, the polarity selection of P and N in MCPWM MCPWM _ IO01/MCPWM _ IO23 does not need to be inverted.

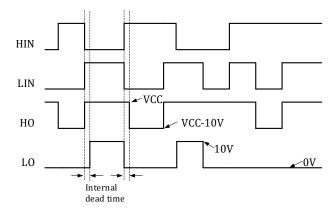


Figure 21-1 Input and output time sequence waveform of drive module

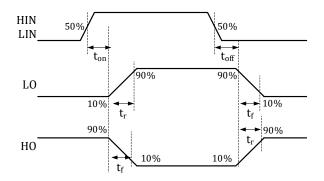
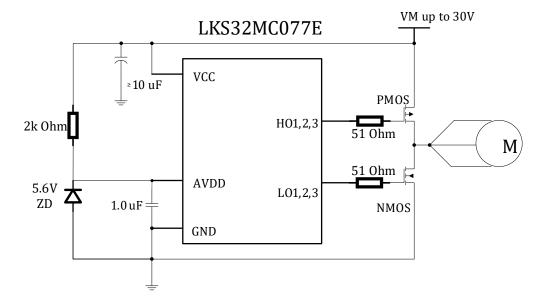
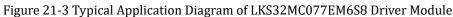




Figure 21-2 Driving module output change edge time sequence waveform

21.2 Recommended application diagram

The output pin signal LO1/HO1 of the drive module corresponds to the MCPWM function output of GPIO P1.0/P0.15, and LO2/HO2 corresponds to the MCPWM function output of GPIO P2.12/P2.11. LO3/HO3 corresponds to MCPWM function output of GPIO P2.5/P2.4.

When the phase current is greater than 2A, it is recommended to connect a 51 ohm resistor in series between the HO1/2/3 output pin and the PMOS gate and between the LO1/2/3 output pin and the NMOS gate.

In applications where VCC is higher than 20 V and the chip does not need to sleep, it is recommended to add a 1 K to 2K ohm shunt resistor between VCC and AVDD, which is added between the input and output of the internal 5V LDO to share part of the heat dissipation function. The resistor needs to be placed some distance away from the chip.

The following formula shall be used to calculate the resistance value:

R>=(VCC-AVDD)/I

Where I is the total power consumption on the 5V power supply, including the power consumption of the MCU and the power consumption of the 5V peripheral devices (such as HALL).

With an external shunt across, place a 5.6 V regulator at the AVDD pin.

At the same time, in applications where there is a resistor between VCC and AVDD, it is important to note that the RC constant on RSTN should not be too large, and it is recommended to keep the RC constant at 1ms. That is, if the internal pull-up resistor is 100 K without adding a resistor to the outside of the chip to 5V, the capacitance on RSTN is selected to be 10 nF. If a pull-up resistor of 10 K or 20 K is added externally, the capacitance on RSTN is selected to be 100 nF.

There must be a 1uF or greater decoupling capacitor from the VCC pin to ground.

The gate drive module polarities are as follows:

{HIN, LIN}	НО	LO	
00	1	0	Upper and lower tubes are turned off
01	1	1	Lower tube conduction
10	0	0	Upper tube conduction
11	1	0	Upper and lower tubes are conducted at the same time, and hardware short circuit protection

22 Special IO multiplexing

Notes for Special IO Multiplexing of LKS07x

The SWD protocol includes two signals: SWCLK and SWDIO. SWCLK is a clock signal. To the chip, it is an input and will always be an input. SWDIO is a data signal. It switches between the input state and the output state during data transmission, and the default is the input state.

Some LKS07x SWD pins also have GPIO function. The IO multiplexed by SWCLK is P2.14 and the IO multiplexed by SWDIO is P2.15. The precautions are as follows:

- The default state of GPIO multiplexing is disabled, IO are used as SWD. After the hard reset of the chip, the initial state of IOs are SWD. Both IOs of SWD are fixed pull-up inside the chip (the internal pull-up resistor of the chip is about 10K). Please pay attention to the initial IO voltage level if application has specific requirements.
- When GPIO multiplexing is enabled, tools such as KEIL cannot directly access the chip, i.e., the Debug and erase download functions cannot access the chip since SWD are now general GPIO. If the program needs to be downloaded again, there are two solutions.
- Firstly, it is recommended to use Linko's dedicated offline downloader to erase. It is recommended to leave a certain margin before switching SWD to GPIO, such as about 100ms, to ensure that the offline downloader can erase the chip and prevent the deadlock. This margin is to ensure a successful offline downloader erasing. A greater margin means a greater probability of the successful one-time erasion.
- Secondly, the application should have a GPIO multiplexing exit mechanism. For example, some other IO invert (usually input), indicates that the SWDIO is required externally, and the software needs to be reconfigured to disable the multiplexing. At this moment, the KEIL function can access the chip via SWD again.

In SSOP24L package and QFN5*5 40L-0.75 package, SWDIO is directly bonded with P0.0 and P2.15, and the corresponding GPIO can be directly enabled. It is recommended that SWDCLK keep unchanged (constant 1 or constant 0) when multiplexing SWDIO

For LKS077E, SWDCLK is bonded with P2.6 and the corresponding GPIO can be directly enabled. If SWDIO and SWDCLK are multiplexed at the same time, considerations for SWDCLK multiplexing are as follows:

- The default state of GPIO multiplexing is disabled, IO are used as SWD. After the hard reset of the chip, the initial state of IOs are SWD. Both IOs of SWD are fixed pull-up inside the chip (the internal pull-up resistor of the chip is about 10K). Please pay attention to the initial IO voltage level if application has specific requirements.
- When GPIO multiplexing is enabled, tools such as KEIL cannot directly access the chip, i.e., the Debug and erase download functions cannot access the chip since SWD are now general GPIO. If the program needs to be downloaded again, there are two solutions.
- Firstly, it is recommended to use Linko's dedicated offline downloader to erase. It is recommended to leave a certain margin before switching SWD to GPIO, such as about 100ms, to ensure that the offline downloader can erase the chip and prevent the deadlock. This margin is to

ensure a successful offline downloader erasing. A greater margin means a greater probability of the successful one-time erasion.

• Secondly, the application should have a GPIO multiplexing exit mechanism. For example, some other IO invert (usually input), indicates that the SWDIO is required externally, and the software needs to be reconfigured to disable the multiplexing. At this moment, the KEIL function can access the chip via SWD again.

When SWDCLK and SWDIO pins are used as GPIO, they should not act at the same time. That is, when SWDCLK multiplexing is enabled and changes, SWDIO can remain at level 0 (similar to time division multiplexing).

For RSTN signal, the default is for the external reset pin of LKS07x chip.

LKS07x allow users to multiplex RSTN as other IOs, and the multiplexed IO is P0.2. The precautions are as follows:

- The default state of reset IO multiplexing is disabled, and the software needs to write 1 to SYS_RST_CFG[5] to multiplex RSTN as GPIO. I.e., the initial state of P0[2] is RSTN. RSTN is provided with a pull-up resistor inside the chip (the internal pull-up resistor of the chip is about 100K). Attention shall be paid when the application has requirements for initial electric level.
- The default state of P0[2] is used as external reset, and the program can only be executed after the RSTN is released. The application needs to ensure that the RSTN has sufficient protection, such as the peripheral circuit with a pull-up resistor. It is better to add a capacitor.
- After RST IO multiplexing is enabled, the external reset is unavailable to the chip. If a hard reset is required, the reset source can only be power-down/watchdog reset.
- > The multiplexing of RSTN does not affect the use of KEIL.

Bit [5] in the SYS _ RST _ CFG register controls the switch for multiplexing RSTN and P0.2.

23 Ordering Information

Tray Package:

Package Type Quantity per disc/tube		Quantity in box	Quantity in case
SOP16/ESOP16L	3000/ disc	6000PCS	48000PCS
SSOP24	4000/ disc	8000PCS	64000PCS
SS0P24	50/ pipe	10000PCS	4000/100000PCS
QFN 8*8	260/ disc	2600PCS	15600PCS
QFN 4*4/5*5/6*6	490/ disc	4900PCS	29400PCS
QFN 3*3	5000/ disc	5000PCS	40000PCS
LQFP48/TQFP48 0707	250/ disc	2500PCS	15000PCS
LQFP64 1010	160/ disc	1600PCS	9600PCS
LQFP100 1414	90/disc	900PCS	5400PCS
TSSOP20/28	4000/ disc	8000PCS	64000PCS

Reel Package:

Package Type		Quantity per	Quantity per	Quantity boxes	Quantity
		disc/tube	box	per case	per case
Braid -13 inches	SOP/ESOP8	4000	8000	8	64000
Braid -13 inches	SOP/ESOP16	3000	6000	8	48000
Braid -13 inches	SSOP24	4000	8000	8	64000
Braid -13 inches	TSSOP20	4000	8000	8	64000
Braid -13 inches	D/QFN3*3	5000	10000	8	80000
Braid -13 inches	D/QFN4*4	5000	10000	8	80000
Braid -13 inches	D/QFN5*5	5000	10000	8	80000
Pipe	SOP16	50	10000	10	100000
Pipe	SOP14/SSOP24	50	10000	10	100000
Pipe	TSSOP24	54	6480	6	38880

24 Version history

Time	Version No.	Description
2025.01.02	1.1	Update the offset voltage of the CMP
2024.08.21	1.09	Add internal predrive connection diagram
2024.08.04	1.08	Order package information updates to confirm package infor- mation by package type and package form
2023.11.20	1.07	Add description of OPA offset
2023.10.22	1.06	Modify the device selection table
2023.09.25	1.05	Update welding temperature, modify non-volatile memory Sector erase description
2023.07.27	1.04	Modify/updated a new model 07x 6N in the device selection table
2023.07.04	1.03	Modify the opa output signal range, power supply range,sleep power consumption and Vcm
2023.05.07	1.02	Correct $I_{\rm H0^+}$ and $I_{\rm H0^-}$ current values of the gate drive module, Updated the number of times the flash can be erased repeatedly
2023.04.07	1.01	Update package description
2023.03.16	1.0	Initial version

Table24-1Document version history

Disclaimer

LKS and LKO are registered trademarks of Linko.

Linko tries its best to ensure the accuracy and reliability of this document, but reserves the right to change, correct, enhance, modify the product and/or document at any time without prior notice. Users can obtain the latest information before placing an order.

Customers should select the appropriate Linko product for their application needs and design, validate and test your application in detail to ensure that it meets the appropriate standards and any safety, security or other requirements. The customer is solely responsible for this.

Linko hereby acknowledges that no intellectual property licenses, express or implied, are granted to Linko or to third parties.

Resale of Linko products on terms other than those set forth herein shall void any warranty warranties made by Linko for such products.

Prohibited for military use or life care and maintenance systems.

For earlier versions, please refer to this document.

